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Abstract

Eddy covariance sites can experience data losses as high as 30 to 45% on an an-
nual basis. Artificial neural networks (ANNs) have been identified as powerful tools for
gap filling, but their performance depends on the representativeness of data used to
train the model. In this paper, we develop a normalization method, which has similar
performance compared to conventional training approaches, but exhibits differences in
the timing of fluxes, indicating different and previously unused information in the data
record. Specifically, the differences between half-hourly model fluxes, especially dur-
ing summer months, indicate that the structure of the information content in the data
changes seasonally, diurnally and with the rate of data loss. This variation between
gap-filling models complicates the application of their output as consistent data sets
for land surface modeling, and points to the need for improved data and models to ad-
dress flux behavior at critical times. We advise several approaches to address these
concerns, including use of separate models for day and nighttime processes and the
use of multiple data streams at dawn, when eddy covariance may be particularly inef-
fective due to the timing of the onset of turbulent mixing.

1 Introduction

Automated field data collection often produces discontinuous data sets as a result of in-
strument malfunction, power failure, or various other technical and non-technical prob-
lems. These discontinuities prove especially problematic for micrometeorological mea-
surements. The expanded use of micrometeorological systems for ecological studies
(Baldocchi et al., 2001) has resulted in an increased interest in methods to interpo-
late values for missing data. Eddy covariance measures landscape-scale energy and
mass fluxes in a wide variety of ecosystems at high temporal resolution (generally
30 min accumulations). Towers are employed in a wide array of geographic regions
including agricultural lands, temperate forests, tropical rainforests, and a range of arid
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and semi-arid landscapes (Baldocchi et al., 2001; Kurc and Small, 2007; Scott et al.,
2006; Wohlfahrt et al., 2008), leading to important insights into the nature of the soil-
vegetation-atmosphere system.

Data acquired using eddy covariance typically has significant gaps caused by insuf-
ficient turbulent mixing (Blanken et al., 1998; Goulden et al., 1996) or the sensitivity
or failure of equipment, as well as poorly identified source areas (Brown-Mitic et al.,
2007). Such factors can lead to violations of the assumptions of the eddy covariance
technique, resulting in data being discarded during processing. These gaps are often
serially correlated to particular events or periods important for observation, such as
extreme weather events or nighttime carbon exchange (Falge et al., 2001) and transpi-
ration (Dawson et al., 2007; Fisher et al., 2007).

To develop daily, seasonal, and annual estimates of fluxes, a method to fill gaps by
approximating values for missing data is crucial. Gap-filled flux data is also applied
in land-surface modeling studies, which often require continuous data streams for pa-
rameter identification. The method used for gap filling should result in flux time series
that provide realistic assessments of moisture flux, energy and carbon exchange. For
example, carbon flux gap filling has been shown to alter estimates of annual carbon ex-
change, including changes in the source/sink behavior of the carbon flux (Moffat et al.,
2007), which presumably better reflects the true behavior of the ecosystem.

Gap filling requires awareness of the nature of missing data; i.e. the user should
know what periods have missing data, why those data are missing, and what rela-
tionships will produce an appropriate estimate for that data. Gap-filling efforts should
concentrate on times where flux records are critical, e.g. periods when flux data are
important for modeling physical processes, such as the breakup of the stable nocturnal
boundary layer, or when values may alter annual flux budgets, such as nocturnal fluxes.
In all gap-filling scenarios, the presence of some valid data during similar periods is
necessary to identify and model the appropriate relationships to replicate expected
values when data are lost. Of course, at very high data loss rates, even a well-trained
model may not be sufficient to reproduce the true behavior of a system.
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Gap filling requires the use of a model to estimate missing data from existing refer-
ence data — numerous models for gap filling have been explored (Falge et al., 2001;
Gove and Hollinger, 2006; Hui et al., 2004; Knorr and Kattge, 2005; Papale and Valen-
tini, 2003). Analysis of several models by Moffat et al. (2007) suggests that artificial
neural network (ANN) methods can provide substantial benefits for gap-filling studies;
they perform similarly to other methods without requiring prior assumptions regarding
model structure and are computationally less expensive. Moffat et al. (2007) also note
in their conclusion the need to expand testing of gap filling models to a variety of dif-
ferent ecosystems, including arid sites. While arid sites may behave differently under
physically based models due to differences in energy and water partitioning, ANNs
should demonstrate similar model performance levels in humid and arid regions.

Neural network methods identify input-output relationships in a manner dependent
on the information contained in the input and output data sets (MacKay, 2003). When
training an ANN, using data from periods that can maximize information regarding the
input-output relationship is key. In the case of gap filling flux records, this requires
capturing the input-output pattern during low turbulent exchange, since these are often
periods which have missing or filtered data. Valid data from periods of low turbulence,
that is just above the filter threshold, are particularly valuable as a result (validity often
established by a criterion such as friction velocity; Blanken et al., 1998; Goulden et al.,
1996). By extracting the maximum available information from data in conditions near
the filter threshold, we can improve the results of gap filling. This study considers an
approach to treating data that modifies the distribution of data to extract information
from data near the filter threshold.

In brief, gaps in flux records pose problems for the development of seasonal and an-
nual estimates of evapotranspiration at the landscape scale. These gaps also make it
difficult to conduct model-based investigations of forcing-response relationships at the
land surface. Here, we investigate the use of an ANN framework to fill gaps in energy
fluxes, with a particular focus on the probability distributions of flux data and the as-
sociated information applied during ANN model training. We apply a standardization
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technique that converts the probability density function of the flux data to an approxi-
mate normal distribution. This transformation moves extreme events toward the central
tendency while expanding the region of near-zero fluxes where much of the sensitiv-
ity in gap-filled flux records is found (Falge et al., 2001). By altering the shape of the
distribution, we can improve the ability of the ANN training algorithm to detect extreme
events.

2 Methods
2.1 Data and model structure

Data used for this study were collected at a mesquite woodland site in Southeastern
Arizona, near Tombstone, AZ (Scott et al., 2004). The data record spans three years
(2001-2003) — the tower was not operational during the winter of 2001-2002. Data
were filtered according to Scott et al. (2004). Time series of the latent heat flux (Fig. 1)
contain data gaps typical of eddy covariance records, with both long (multiple-day to
week) and short gaps (several hours to individual 30-min intervals). Similar patterns
of missing data have been found in flux tower records from mesic and humid systems
including a range of forest types (tropical and temperate, broadleaf and needleleaf;
Falge et al., 2001; Moffat et al., 2007).

The ANN models used in this study compute estimates of latent and sensible heat
fluxes based on inputs of precipitation, relative humidity, wind speed, air pressure,
net radiation and temperature. Fluxes were filtered prior to modeling using a friction
velocity (u”) filter reported in (Scott et al., 2006). The input-output structure was similar
to simple equations of evapotranspiration (e.g., Penman equation; Alavi et al., 2006) as
well as land-surface models (Pitman, 2003). Input meteorological data come from a site
less than 1 km from the tower and were gap-filled independently using a mean diurnal
value method. After running the model, the latent heat fluxes were then converted into
evapotranspiration (ET, mm/30-min) for ease of interpretation.
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Model training used the mean absolute error (MAE) to account for the error structure
of individual flux observations (Richardson et al., 2006). Training was performed on
the data from 2003, comprising the longest near-continuous record in the data, and
was validated over the entire three-year time series. Gap filling performance was eval-
uated on existing gaps in the data to assess the performance of models in a “real” gap
filling application. Here, model performance on existing data is used to evaluate the
predictive capability of the model.

2.2 ANN training and information content
2.21 Approaches to ANN training data

When using ANNSs, pre-processing methods are used to transform input and output
data onto the range +1 (e.g., Matlab Neural Network Toolbox, MathWorks, Inc., Natick,
MA). This ensures that the model will predict outputs based on the scaled variation
in and among the data, rather than one dominant data stream of large magnitude. As
a way to assess this scaling process, we examine the probability distribution function of
the output training data (the measured values of ET) before applying the ANN for gap
filling. Two different scaling techniques are applied, the first a simple scaling, reducing
values to the range [-1 1] and the second making a standardized distribution, which is
described below.

In order to standardize the flux data, the raw data is assumed to belong to a gamma
distribution. The absolute value of the minimum is added to each point in the raw data
so that the entire record is positive. After this shift, a gamma distribution was fit using
a maximum likelihood method in the Matlab statistical functions (gampdf and gamcdf).
These statistical functions were used to transform the data to a normal distribution
using a method similar to the standardized precipitation index (SPI), after (Mishra and
Desai, 2006). The normalization is achieved using an approximation for the normal
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co+c1z‘+02t2
Z=—-|1t- for0O<H(x)<0.5
1+dit+dyt2 +dstd

Z =

2

Cot+Cil+Cot
fo 012 for 0.5 < H(x) < 1

1+0d,t+d,t2 +dst3

where, Z is the standardized index. The term, ¢, is calculated as:

t=/In [W] for 0 < H(x)<0.5

t=\/in [W] for 0.5 < H(x) < 1

where H(x) is the cumulative gamma function, and the coefficients are:

co=2.515517 ¢,=0.802853 ¢, =0.010308
dy=1.432788 d,=0.189269 d3=0.001308

The transformation alters the distribution of the latent heat flux data applied to the
model as shown in Fig. 2. The results of this transformation are used directly as the
training data for the model. The subsequent output is then converted back to values
of latent heat flux using a third-order polynomial fit (r2=0.98). By applying this trans-
formation, we are able to alter the sampling patterns used by the ANN during training,
and thus enhance the sampling from extreme values of latent heat flux.

2.2.2 Information theory and ANN training

To quantify the effects of different methods of data scaling, we consider the training data
in terms of its information content, that is, the new behavior described to the model
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by the data. Maximizing the information extracted from data should lead to the best
possible model performance. We use the Shannon index to estimate the information
associated with the frequency of certain values of latent heat flux. The Shannon index
(Shannon, 1948), quantifies the amount of information, A(x), characteristic of a value
(or range), x, as a function of its probability p(x), according to the expression:

h(x) = —p(x)In(p(x)) (3)

and the global information content, H, for all values of x in the set, S:

S S
H= h(x)=- p(x)in(p(x)) (4)

As noted above, most implementations of ANNS, including the default settings of most
software packages, simply rescale the distribution of the raw data to an interval [-1 1]
(e.g. the mapminmax function in Matlab). Under this typical rescaling approach, the
total Shannon index value of the distribution shown in Fig. 2b is 1.08. Values for each
bin are shown in Table 1. To increase the information extracted from extreme low and
high values of latent heat flux, the data were transformed from their original distribution
into a (near) normal distribution, as described below. The resulting transformation
yielded a total Shannon index of 1.77. At very low values of latent heat fluxes (less
than 125Wm'2, or 0.1 mm/30 min), the information content in the original distribution
is 1.05 compared to 1.37 in the standardized distribution.

We estimate the Shannon index, using Eqgs. (3) and (4), in the training record. These
index values describe the information content passed to the ANN during training. Equa-
tions (3) and (4) are not explicitly used to inform ANN training, but instead provide offline
information about the characteristics of the data applied to the model.

2.3 Model performance

The two ANN models developed here were trained using 1) the typical approach of
rescaling the latent heat flux data, referred to here as the “rescaled” model and 2) the
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new approach which used a standardized approach, referred to as the “standardized”
model. Both models were trained using MAE, as noted above. Model training used
data from the year 2003, which represents the longest near-continuous subset of the
data that incorporates a full range of seasonal behavior. A one-year data record is the
shortest span which can reproduce seasonality without risk of overtraining at longer
times (Neal, 2008).

After running the models, the output latent heat flux was converted to evapotranspi-
ration (ET) for ease of comparison between models and to conventional ET measure-
ments from other studies. Results are reported for the raw, unfilled data set (ET,,,),
the rescaled model (ET,,.) and the standardized model (ETgy).

Model performance was determined using several metrics: root mean squared error
(RMSE), relative RMSE, MAE and Pearson’s correlation. These metrics were calcu-
lated for the training period as well as the entire data record. Model residuals were
also used to quantify model performance as a function of data loss. These residuals
were calculated for each half hour interval and averaged for the entire record as well as
seasonally (see below for a description of season delineation). The fraction of missing
data for each half hour during these time periods was used to characterize data loss.

For comparison, uncertainty bounds were determined for the raw data during the
training period. Because the tower was only operating during the growing season of
2001 and 2002, uncertainty estimates were only calculated based on the 2003 data.
Uncertainty was determined for each 30-min interval using the difference between flux
values on days of similar environmental conditions to identify the measurement uncer-
tainty (Richardson et al., 2006).

As noted above, patterns in model performance were analyzed on daily and half-
hourly time steps. Performance was also examined based on seasonal behavior. Sea-
sons were defined as winter (December-January-February); monsoon, describing the
North American Monsoon (Gochis et al., 2006) and identified by a climatologically de-
fined rainy season (Kurc and Small, 2007) between late June and early September;
and pre- and post-monsoon, the remainder of the year not contained in the other two
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seasons. These seasons are effectively winter, summer and spring/fall, but we use the
climatologically defined monsoon to better identify moisture availability during the wet
season.

3 Results

Model training resulted in similar performance for both models (Table 2). While the
rescaled neural network model (ET,;) has a slightly lower RMSE and a slightly higher
correlation, the difference in both is within the measurement uncertainty for the data.
At a daily level, the difference in RMSE values for the two models is lower than the
half-hourly RMSE, suggesting that the ANN model training may lead to compensation
between under- and overestimation at different times during the day.

Time series of daily ET for the raw and model data during the year 2001 follow an
expected seasonal trend (Fig. 3). The difference between the annual ET derived from
the two neural network methods approximately 50 mm. Both of the model methods
(ET,sc, and ETgy) generally reproduce the seasonal pattern of ET at the daily level,
though they differ in the magnitude of ET response to precipitation events, with ETgy
producing more ET following storms but regressing to lower ET between storms.

Note that ET is greater than annual precipitation (253 mm in 2001). This difference
is likely due to the influence of groundwater near the riparian corridor. Plant access
to and use of groundwater at this site is discussed in several other studies, and has
been linked both to inputs from the aquifer as well as bank storage following high flow
events in the San Pedro River (Scott et al., 2006, 2004, 2008). The strong atmo-
spheric demand on moisture from the semi-arid climate suggests that the availability of
groundwater will have little impact on the ability to model ET based on meteorological
variables. In terms of this study, omission of a groundwater term is not likely to affect
either model in comparison to the other.

Comparing the two models in terms of daily ET (Fig. 4), the two models deviate
from each other at daily ET values around 2 mm/day. These periods (region 2 in Fig. 4)
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correspond to the pre- and post-monsoon season. At high values of daily ET, i.e. during
the monsoon season, comparing the two models shows a high degree of scatter around
the 1:1 line. At low values of ET, which generally occur during winter, the two models
correspond well at the daily level.

Along with daily ET, the diurnal patterns of ET flux should be reproduced by a gap
filling model. In the overall data set as well as in each of the three seasons, data loss is
high during the nighttime and low, though still substantial around midday (Fig. 5). Rates
of data loss generally follow the pattern of sunlight hours for each season. These rates
of data loss, from the entire data set and each season independently, are used to
estimate model performance as a function of data loss.

Applying the rate data loss as a predictor of model performance, using several forms
of the model residual, the two models appear relatively consistent (Fig. 6). Residuals
calculated include the absolute (ET,,qe1—ET,aw) @nd relative (as a fraction of ET,,,)
values as well as the residual normalized by the standard deviation of the data. The
models both show slight improvement in the absolute value of residuals and worsening
performance in terms of relative residuals. Most notably, however, the residuals from
ETgq, Which are much larger in magnitude than ET, at low rates of data loss, actu-
ally indicate improved performance than ET . through intermediate levels of data loss
(between 40 and 70% loss, Fig. 6).

The diurnal pattern of model performance (Fig. 7) indicates poor model results during
dawn in all three seasons and in the overall record. Errors during dawn and near-dawn
periods are larger even than dusk and near-dusk times. Because the near-dawn period
is associated with the breakup of stable nighttime air and the return of turbulent flux at
the boundary layer, poor model performance is related to this change in the nature of
the measured flux data.
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4 Discussion and conclusions

At a qualitative level, the two models both reproduce the seasonal and event-based
patterns in the data record. Timing of peak ET events occurs at similar times at the
daily time-step when viewed on an annual level (Fig. 3). However, when examined
more closely, the differences in model behavior become more noticeable and form the
basis for the comparison in this study.

4.1 Model performance and information extraction

The standardized model, with a higher Shannon index value, should yield a trained
model that better represent the observed pattern of ET, especially at low flux magni-
tudes. However, in terms of error metrics, the two models perform similarly (Table 2).
The rescaled data appears to be biased toward lower values of ET, while the stan-
dardized model favors larger values of ET. In both cases, the performance of each
model does not fully replicate the distribution of the raw data. However, the represen-
tativeness of any of the three distributions is complicated by the frequent loss of data,
especially at low ET.

As shown here, ANNs as gap-filling tools are insensitive to data treatment (rescaled
or standardized). The differences in performance between the two models (Table 2)
are much smaller than the magnitude of the errors. Slight differences between the two
models suggest that problems with model implementation, e.g. input data identification
and/or data loss, are more substantial than problems with information extraction.

Model residuals as a function of data loss further indicate that the performance of
ANNs is insensitive to the treatment applied to the training data. While the standardized
method showed slight improvement as a function of data loss, especially at intermedi-
ate levels of loss (Fig. 6), the range of error values under both treatments were similarly
large and the standard error estimates from both methods fully enveloped those of the
other model. Model performance cannot be discriminated due to the large standard
deviations of error based on a diurnal pattern. Since both models yield similar error
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values for the full time series and similarly over/under-estimate the ET, model improve-
ment from data treatment may be limited.

Our findings are contrary to our initial hypothesis, that altering the data distribution
would improve model performance by making more information available during model
training. Changing the probability distribution of the data should have improved the
sampling rate of extreme events by narrowing the range of values in the standardized
index (Fig. 2). Based on the objective functions (Table 2) and the wide variability of
errors as a function of data loss (Fig. 6), it appears that the hypothesis may not be true.
This result suggests either that the model structure may be flawed or that the missing
data presents a much greater obstacle than the transformation can overcome.

4.2 Nocturnal evapotranspiration

One important result when comparing the two models is the difference in nocturnal
ET (Table 3). Both models have reduced errors at night, and are similarly prone to
over and underestimation, especially when rates of data loss are high (Fig. 6). In
a diurnal sense, the standardized model has a tendency to predict higher nighttime ET,
especially around dawn, when the model shifts into a mode of increasing ET earlier
than the rescaled model.

Several other studies have reported on ET at night from deciduous forest sites in
more humid regions (e.g., Novick et al., 2009). Few have reported on nighttime activity
in arid riparian systems. At our site, nighttime ET is estimated at 0.06 and 0.09 fraction
of daily ET based on the rescaled and standardized models, respectively. These frac-
tions are similar to those reported for humid forests, indicating that semi-arid riparian
species with persistent access to groundwater evapotranspire at similar rates as humid
forests during the night. Evaporative demand is dramatically reduced at night when
radiative forcing is absent and relative humidities rise, even in arid locations.

Comparing nocturnal ET to estimated values of daytime and nighttime evaporation
(E) and transpiration (T), we find that nighttime ET is a similar fraction of daytime ET
as nighttime T to daytime T (~0.5-0.1, Fisher et al., 2007). This suggests that plant
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transpiration scales directly with total ET from day to night. Even under the different
model treatments proposed here, the ET,/ET, ratios are consistent. As noted in the
error analysis, the results of gap filling analysis using two different training data sets
does not alter predictions of ET,/ETj.

4.3 Near-dawn evapotranspiration

The poor model performance at and near dawn provide strong evidence of the flaws
associated with eddy covariance data at those times. Conventional methods of eddy
covariance data filtering apply a u*-filter or other methods based on turbulence the-
ory. However, the greater error at dawn compared to other nighttime intervals, despite
similar friction velocities, indicate that the onset of turbulence is problematic for both
measurement and modeling. Because the theoretical basis for eddy covariance is built
on strong turbulent mixing, measurements during and immediately following periods of
high stability pose substantial difficulties which may not be overcome in data-dependent
regression models. Further investigation into near-dawn energy and moisture fluxes
will provide insight into how ecosystems use water during this critical period.

In the scope of model-data fusion approaches, the question of eddy covariance data
quality remains a problem for the research community. Model development and cali-
bration is dependent on continuous data records. However, the poor quality and fre-
quent loss of data, especially at night, may require that model results are taken as
the standard for comparison against data. The difficulty is in properly identifying the
source of the best information for nighttime fluxes. In this study, we show that altering
the way in which the model samples data may not significantly improve model results.
We postulate that, in future studies, applying ancillary data streams (e.g. chamber flux
measurements or soil moisture data) or using alternate model structures may have
a greater effect on gap filling results.
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4.4 Implications of this study

Overall, this study points toward several arenas for future study in modeling land-
atmosphere interactions and gap filling. Applying principles of information theory can
indicate what flux values are the most informative for modeling applications. Gap fill-
ing as a modeling exercise attempts to restore information where it is lost. As shown
here, increasing the information content of low flux values may not dramatically improve
overall model performance, but performance is not dramatically reduced either.

An information theory approach may not satisfy deficiencies inherent to the origi-
nal data. The poor performance of both models during the near-dawn periods can be
linked to the timing of the onset of turbulent mixing as the nocturnal boundary layer
breaks up. In this study, both data treatments lead to overestimation of fluxes be-
tween 05:30and 08:00 local time, when the stable nighttime air is becoming unstable
due to surface warming. The meteorological variables used as model inputs indicate
increasing fluxes earlier than the actual data. Because this time period represents
the threshold of feasible data collection by eddy covariance, other methods (e.g. leaf-
level measurements of transpiration) should be used to corroborate the data or model
results.

Because of the differences in turbulent mixing between nighttime and daytime pe-
riods, parallel gap filing models may be an appropriate solution to the information
extraction problem identified here. Where most approaches use a single model for
nighttime and daytime, assuming that the flux mechanisms and controlling variables
are consistent throughout, we propose using different models for night and day, focus-
ing on identifying appropriate model structures for each. Applying two models will also
provide another avenue to explore filter criteria when stable nighttime air forms.

This study also points out one of the potential problems with model training, that im-
proved model performance under certain conditions (here low flux values) may result
in poor performance under other conditions. The “black box” nature of ANN model de-
velopment means that these tradeoffs in model performance come without the ability

6539

HESSD
7, 6525-6551, 2010

Modeling moisture
fluxes using artificial
neural networks

A. L. Neal et al.
Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/7/6525/2010/hessd-7-6525-2010-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/7/6525/2010/hessd-7-6525-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

to fully trace model outcomes to changes in the model structure or training. Com-
paring the diurnal plots for the two models, it appears that the standardized model
under-estimated midday ET, which may have been ignored in favor of improving ET
performance at other times of the day. The risk of this compensatory effect in model
training suggests that different models should be used for filling gaps at night and dur-
ing the day, especially in light of the different micrometeorological conditions at work
in those times. Using separate models would allow one model to track patterns under
stable nighttime conditions, while another would follow the flux behavior under turbulent
mixing.
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Table 2. Summary of model performance for both ANNs. Model training used mean absolute

error (MAE) to identify parameters.

Metric Training Validation
ETrsc ETstd ETrsc ETstd
MAE (mm) 0.0252 0.0329 0.0272 0.0348
RMSE 30 min (mm) 0.0403 0.0517 0.0413 0.0522
RMSEdaily (mm) 0.7395 0.9301 1.0544 1.0876
Rel RMSE (-) 0.0369 0.0475 0.3920 0.4954
Correl 0.8951 0.8326 0.8638 0.7916
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Fig. 1. The time series of latent heat flux used in this study shown as the full record (upper
plot) and highlighting in more detail the concerns associated with gap filling, including properly
identifying the length of near-zero fluxes at night, and the timing and rate of flux increase during

the day (lower plot).
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Fig. 2. Histograms of relative frequency of latent heat flux at the flux tower site. Frequency of
the raw data is shown in (a). Plot (b) is the frequency of the LE, (the mapminmax function
of the Matlab Neural Network Toolbox was used to perform scaling). Plot (c) is a histogram
of standardized LE as described in Data and Methods. Note that the mapminmax retains
the original distribution while the standardization transforms the distribution to something near
normal for ET.
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Fig. 3. Precipitation (P) and daily ET for (a) ET,,,, (b) ET,, and (¢) ETyy for the year 2001.
Sum of ET over the year is shown in the box associated with each plot (sum of precipitation is
263 mm).
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Fig. 7. Diurnal plots of model residuals from the full time series.
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